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Motivation

Robotic control is a complex problem and is approached
in many different ways, such as classical motion planning,
optimal control methods, and learning-based methods. Ex-
tensive research has been conducted on complex robotic
motion control, with gaining widespread adoption in rein-
forcement learning methods recent times.
Reinforcement learning [1] is a machine learning approach
where an agent learns to make decisions by interacting
with an environment and receiving feedback in the form of
rewards or penalties. The idea of reinforcement learning
shares a common point with optimal control, which is
a computational approach that seeks to determine the
inputs to a system over time in order to optimize a defined
performance measure, accounting for system dynamics and
constraints.
Reinforcement learning plus optimal control has a potential
to leverage both learning from data and mathematical
optimization to achieve optimal performance in complex and
dynamic environments, thereby enabling efficient decision-
making and action.

Problem setup

Double pendulum [2] is the perfect setup for testing newly
designed control algorithms for its highly nonlinear and
chaotic behavior. There are two underactuated variations
of the double pendulum setup. If it is actuated on the
shoulder joint, it is called ”pendubot”, on the contrary, if
it is actuated on the elbow joint, it is called ”acrobot”.

Figure: Double pendulum setup in CAD and in real world

The objective revolves around accomplishing two primary
tasks: swinging the double pendulum from its lowest posi-
tion to its highest point, and maintaining stability at the
highest point.

Methodology: SAC+LQR

To achieve the swing-up task,we employ the classical model-
free reinforcement learning algorithm known as Soft Actor-
Critic (SAC) to train a policy which is able to reach the
region of attraction (RoA) of a continuous time linear
quadratic regulator (LQR) controller. As soon as the system
enters the RoA, we transition to the LQR controller to
stabilize the entire system.
Soft Actor Critic (SAC) [3] is a widely used reinforcement
learning algorithm tailored for continuous action spaces.
SAC uses an actor-critic structure, where the actor selects
actions based on the policy, and the critic evaluates state-
action pairs. Entropy regularization is a key aspect of
SAC, promoting exploration and enhancing learning by
maximizing action randomness.
LQR [4] excels at controlling nonlinear systems near a lin-
earized operating point. Theoretically, we can approximate
the RoA [5] in the 4D state space with an ellipsoid. Optimiz-
ing the RoA volume using numerical methods, we achieve
the largest possible RoA volume by tuning hyperparameters
of the LQR controller.

Reward shaping

We’ve devised a 3-stage reward approach. The first stage
utilizes a quadratic reward function to promote smooth
swinging within a few training sessions. Upon reaching a
threshold line with the end effector, a second level of reward
rline is introduced. The third reward level, rLQR, encourages
the agent to stay within the Region of Attraction (ROA) of
the LQR controller. This encourages a seamless transition
from the SAC controller to the LQR controller.To discourage
the agent from exploiting rewards by spinning at excessive
speeds, a significant penalty −rvel is implemented for any
speed exceeding vthresh.
The full equation for this reward function is:

r(x , u) =− (x − xg)
TQtrain(x − xg)− uTRtrainu

+

{
rline if h(p1, p2) ≥ hline ,

0 else

+

{
rLQR if (x − xg)

TSLQR(x − xg) ≥ ρ ,

0 else

−
{
rvel if |v1| ≥ vthresh ,

0 else

−
{
rvel if |v2| ≥ vthresh ,

0 else

where x is the current state, xg is the goal state, u is the
control input, and the end effector height h(p1, p2) is given
by: h(p1, p2) = −l1 cos(p1)− l2 cos(p1 + p2)

Simulation result

As shown here, we have achieved successful results in a
simulation environment.

Figure: Successful pendubot simulation

Figure: Successful acrobot simulation

Pendubot swings up in one second, acrobot in about two.
Both stabilize near unstable points for an extended period.
According to simulation leaderboard, our model delivers fair
results in terms of maximum torque, integrated torque, and
torque cost. However, we have made some compromises in
terms of torque smoothness and energy efficiency.

Sim2Real gap

When transitioning the successful simulated model to the
real system, we encounter issues such as control signal
latency, torque tracking, model uncertainty, and other dis-
turbances.

Figure: Successful simulation for pendubot

Our current approach to the problem involves creating a
noisy environment that merges real-world features in the
simulation. We then select a successfully trained agent from
this noisy simulation and transfer it to the real system.

Real world experiment

Currently, SAC+LQR is only operational on the real pen-
dubot system.

Figure: Pendubot real system leaderboard

The success rate for the real system application is 40%, as
recorded on the leaderboard. The positive aspect is the swift
swing-up time of 0.67s and moderate energy consumption
at 37.12J. However, the challenge lies in torque smoothness,
measured at a low 0.298, likely a major factor in failed runs.
Regrettably, the method is currently ineffective for the real
acrobot setup.

Result and future work

In simulations, both pendubot and acrobot setups succeed.
In real-world tests, only pendubot achieves a 40% success
rate. The controller excels in swing-up time and moderate
energy metrics, but torque-related challenges remain. We
target effective sim-to-real transfer, particularly for the
acrobot, and consider model-based RL like PILCO and
extensions.
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